Print	rinted Page:- Subject Code:- ACSBS060	1					
	Roll. No:						
NO	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GRE						
(An Autonomous Institute Affiliated to AKTU, Lucknow)							
	B.Tech						
	SEM: VI - THEORY EXAMINATION (20 20) Subject: Artificial Intelligence						
Tin	Time: 3 Hours	Max. Marks: 100					
Gene	eneral Instructions:						
IMP:	MP: Verify that you have received the question paper with the correct course,	code, branch etc.					
	This Question paper comprises of three Sections -A, B, & C. It consists of M	Iultiple Choice					
	uestions (MCQ's) & Subjective type questions.	.•					
	Maximum marks for each question are indicated on right -hand side of each	question.					
	Illustrate your answers with neat sketches wherever necessary. Assume suitable data if necessary.						
	Preferably, write the answers in sequential order.						
	No sheet should be left blank. Any written material after a blank sheet will no	ot be					
	valuated/checked.						
<u>SEC</u>	ECTION-A	20					
1. Att	Attempt all parts:-						
1-a.		1					
	(a) Computing Power						
	(b) Trust Deficit						
	(c) Limited Knowledge						
	(d) All of the mentioned						
1-b.		1					
1-0.		1					
	(a) Maximize winning possibility assuming that opponent will try to (Minimax Algorithm)	minimize					
	(b) Ignore the unwanted portion of the search tree (Alpha Beta Prunir	ng)					
	(c) Evaluation(Utility) Function						
	(d) All of the mentioned						
1-c.	c. A* algorithm is based on (CO2, K1)	1					
	(a) Depth-first search						
	(b) Breadth-first search						
	(c) Hill climbing search						
	(d) Best-First-Search						
1-d.		values for one 1					
ı u.	variable at a time and returns when a variable has no legal values left assign. (CO2, K1)						

	(a)	Forward search	
	(b)	Backtrack search	
	(c)	Hill algorithm	
	(d)	Reverse-Down-Hill search	
1-e.	M	ain disadvantages associated with hill-climbing search include: (CO3, K1)	1
	(a)	Terminates at local optimum & Does not find optimum solution	
	(b)	Terminates at global optimum & Does not find optimum solution	
	(c)	Does not find optimum solution & Fail to find a solution	
	(d)	Fail to find a solution	
1-f.	Al	ternative term used for informed search strategy is (CO3, K1)	1
	(a)	Simple search	
	(b)	Heuristic search	
	(c)	Online search	
	(d)	None of the mentioned	
1-g.		entify the term that represents the judgmental or commonsense aspect of oblem solving: (CO4, K2)	1
	(a)	Heuristic	
	(b)	Critical	
	(c)	Value based	
	(d)	Analytical	
1-h.	Cł	noose the property that is not of representation of knowledge. (CO4, K6)	1
	(a)	Representational Verification	
	(b)	Representational Adequacy	
	(c)	Inferential Adequacy	
	(d)	Inferential Efficiency	
1-i.		se the knowledge acquisition method that relies on retrieving and adapting lutions from previously solved cases. (CO5, K3)	1
	(a)	Knowledge Elicitation	
	(b)	Case-Based Reasoning	
	(c)	Reinforcement Learning	
	(d)	Protocol Analysis	
1-j.		valuate which reasoning strategy in expert systems proceeds from given facts to crive a conclusion using predefined rules. (CO5, K4)	1
	(a)	Forward Chaining	
	(b)	Backward Chaining	
	(c)	Rule-Based Reasoning	
	(d)	Heuristic Reasoning	
2. Atte	empt a	ll parts:-	

2.a.	List two problems related to AI. (CO1, K1)	2
2.b.	Differentiate between informed search and Uninformed Search. (CO2, K4)	2
2.c.	Define MAX and MIN in min max algorithm. Give name of one application in which it used. (CO3, K1)	2
2.d.	Explain De Morgan's Law with an example. (CO4, K2)	2
2.e.	Define reinforcement learning as a training method where agents learn via rewards/punishments, optimizing actions in dynamic environments. (CO5, K1)	2
SECTIO	<u> </u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Describe the architecture of a learning agent. Explain how its components interact to improve performance through experience. (CO1, K2)	6
3-b.	Explain some real-world applications of AI. (CO1, K2)	6
3-c.	Explain the DFS algorithm with example. (CO2, K2)	6
3-d.	Prepare a short note on- (CO2, K5) a. Simple hill Climbing b. Steepest-Ascent hill Climbing c. Stochastic hill Climbing	6
3.e.	Explain Travelling Salesperson Problem with an example. (CO3, K2)	6
3.f.	Differentiate between Semantic Nets and Partitioned Nets. (CO4, K4)	6
3.g.	Illustrate the architecture of a knowledge-based system, explaining the roles of its core components such as the knowledge base and inference engine. (CO5, K2)	6
SECTIO	ON-C	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Explain the scope of Artificial Intelligence across industries such as gaming, healthcare, and education. Analyze how AI contributes to shaping the future across these domains. (CO1, K4)	10
4-b.	Compare and contrast the following pairs of concepts with respect to their functionalities and goals: (CO1, K4) a. Strong AI vs. Weak AI b. Goal-based Agent vs. Utility-based Agent	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Describe Hill Climbing Algorithm with its types, and also explain local maximum, global maximum, flat local maximum, current state, shoulder. (CO2, K2)	10
5-b.	Prepare a short note on- (CO2, K5) a. Uniform Cost Search b. Iterative Deepening Depth First Search	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Design a state-space graph for the water jug problem (8L, 5L, 3L) and apply breadth-first search to divide water into two 4L portions. Document each state transition and validate the solution's optimality. (CO3, K5)	10

6-b.	Explain various ways of Knowledge Representation with an example of each. (CO3, K2)	10
7. Answ	ver any one of the following:-	
7-a.	Explain Forward Chaining and Backward Chaining with diagram. (CO4, K2)	10
7-b.	Explain Expert System is used. Draw and explain architecture of Expert System. (CO4, K2)	10
8. Answ	ver any one of the following:-	
8-a.	Explain goal stack planning and compare it with alternative planning strategies. (CO5, K2)	10
8-b.	Discuss Dempster-Shafer theory and compare it with Bayesian networks. (CO5, K2)	10

